Почему же все таки не падает велосипед. Почему велосипед не падает при езде

Довольно распространенный вопрос, который волнует и детей, и взрослых – это почему велосипед не падает . Действительно, езда на велосипеде и умение держать равновесие видятся как некоторая фантастическая супер-способность. Устойчивость велосипеда объясняется несколькими фундаментальными физическими законами. Однако, всё ли так просто, как кажется на первый взгляд?

Любой велосипедист начинает свой путь с того, что . Велосипед сам по себе очень неустойчив. Даже самая широкая резина не придаст ему большей устойчивости. Для того, чтобы научиться кататься, нужно . Что это значит? Это значит, что юный (или не очень) велосипедист должен настолько хорошо научиться взаимодействовать с великом, что в момент отклонения от точки баланса организм автоматически выполнит необходимое действие и велосипед поедет дальше. Если такое действие выполнено не будет, то велосипед вместе с ездоком упадет. Организм человека сам подбирает необходимый набор действий, что в результате некоторого количества тренировок приводит к формированию уверенного навыка катания на велосипеде.

Навык этот формируется в результате стандартных упражнений – крути педали, подруливай в сторону падения, держи руль крепче и т.д.

Если проанализировать каждое действие велосипедиста при движении, то каждое движение имеет глубокий физический смысл. Например, когда человек на велосипеде чувствует, что велосипед заваливается на бок, он начинает отклоняться в противоположный бок. Когда происходит замедление, при котором сохранять устойчивость сложнее, велосипедист набирает скорость. Этот цикл действий, которые порой остаются за гранью нашего сознания и держатся на рефлексах и позволяют велосипеду не падать .

Почему велосипед не падает с физической точки зрения

Если проанализировать всё, что было перечислено выше, то можно сделать вывод — велосипедист во время движения следует некоторым подсознательным установкам. Это и позволяет сохранять состояние равновесия. Как канатоходец с шестом, велосипедист держит баланс. В основе устойчивости велосипеда лежит два основных физических понятия . Если рассматривать вопрос с физической точки зрения, то велосипед не падает именно благодаря этим явлениям.

Первое физическое явление – это . Для того, чтобы не влезать в сложную теорию и малопонятные формулировки, описание можно сильно упростить. Вспомните, что чем меньше скорость движения велосипеда, тем сложнее сохранять равновесие. Физика объясняет это появлением момента инерции на колесах велосипеда, которое способствует сохранению вертикального положения. Явление аналогично сохранению вертикального положения вращающегося волчка – юлы. Юла сохраняет равновесие пока вращается её «юбка».

Второе явление, которым объясняют устойчивость велосипеда – это подсознательное подруливание в сторону падения . Вспомните, как учат кататься на велосипеде. Учитель всегда говорит, что если вы падаете, то нужно поворачивать в сторону падения. Если проанализировать движение взрослого опытного велосипедиста, то и он постоянно подруливает рулем при движении. Только в отличие от ученика, это подруливание составляет всего 2-3 мм. Когда велосипед начинает подруливать, центробежная сила возвращает колёса в их обычное положение и велосипедист сохраняет равновесие. Стабилизирующий эффект оказывает особенность расположения рулевого стакана . Из статьи вы узнали, что рулевой стакан расположен под углом, отличным от прямого. В итоге, если ось вращения руля продлить до земли, то она упрется в поверхность земли чуть раньше, чем землю касается само колесо. Между этими осями образуется так называемый угол. Этот угол называется кастор .

Термин кастор используется во всей механике и автомобилестроении. Благодаря такой ориентации, поворот велосипедного руля практически выталкивает падающее колесо из крена и возвращает в положение равновесия. Образно это можно представить, как постоянное «выдергивание» руля с последующим перемещением колеса в нужное направление.

Классическая теория не объективна. Велосипед не падает из-за магии?

Казалось бы, описанная теория вполне состоятельна с логической точки зрения и имеет подтверждение. Однако, не так давно коллектив независимых исследователей провёл ряд экспериментов, которые заставили усомниться в полноте имеющегося объяснения.

Они создали специальный стенд – аналог велосипеда. Ему сделали совсем маленькие колёсики, момент инерции которых минимален, и свели «на нет» влияние кастора, т.е. расположили рулевую под перпендикулярным углом к земле. Кроме того, стендовый велосипед был оборудован двумя колесами, которые вращаются в противофазе с основными и тем самым заставляют нивелировать эффект гироскопа. По классическим представлением, катание на таком велосипеде невозможно . Однако, на опытном образце было вполне возможно передвигаться. Нельзя сказать, что пилот-испытатель был сильно рад таким конструктивным особенностям. Ехать и правда было значительно сложнее и удержаться в седле оказалось непросто. Но физически это было возможно . Следовательно, имеющаяся теория не объясняет в полной мере весь физический процесс.

Ученые предположили, что помимо описанных явлений гироскопа и специфического расположения рулевой, в устойчивость велосипеда вносит вклад и развесовка. Большая часть массы ездока приходится на заднее колесо, а переднее подруливает. Значит факт наличия кастора не столь принципиален, т.к. «морда» не полностью нагружена и легко поддается управлению.

Соответственно, не сегодняшний день ответить в полном объеме на вопрос «почему велосипед не падает » нельзя. Известно, что огромный вклад в устойчивость велосипеда действительно вносят эффект гироскопа и стабилизирующий эффект подруливания. Помимо этого, важна правильная развесовка. Сосредоточение большей части массы на заднем колесе делает велосипед легко управляемым. Кроме того, велосипедист своими сложными движениями, которые не всегда заметны со стороны, поддерживает равновесие всей конструкции.

Сочетание умения велосипедиста найти точку баланса и описанных физических принципов позволяет велосипедисту держать равновесие.

Для того, чтобы двухколесный велосипед не упал, нужно постоянно поддерживать равновесие. Поскольку площадь опоры велосипеда очень мала (в случае двухколесного велосипеда это всего лишь прямая, проведённая через две точки, в которых колеса касаются земли), такой велосипед может находиться только в динамическом равновесии. Это достигается с помощью подруливания: если велосипед наклоняется, велосипедист отклоняет руль в ту же сторону. В результате велосипед начинает поворачивать и центробежная сила возвращает велосипед в вертикальное положение. Этот процесс происходит непрерывно, поэтому двухколесный велосипед не может ехать строго прямо; если руль закрепить, велосипед обязательно упадёт. Чем выше скорость, тем больше центробежная сила и тем меньше нужно отклонять руль, чтобы поддерживать равновесие.

При повороте нужно наклонить велосипед в сторону поворота так, чтобы сумма силы тяжести и центробежной силы проходила через линию опоры. В противном случае центробежная сила опрокинет велосипед в противоположную сторону. Как и при движении по прямой, идеально сохранять такой наклон невозможно, и подруливание осуществляется точно так же, только положение динамического равновесия смещается с учётом возникшей центробежной силы. Конструкция рулевого управления велосипеда облегчает поддержание равновесия. Ось вращения руля расположена не вертикально, а наклонена назад. Кроме того, она проходит ниже оси вращения переднего колеса и впереди той точки, где колесо касается земли.

Благодаря такой конструкции достигаются две цели:

При случайном отклонении переднего колеса от нейтрального положения возникает момент силы трения относительно рулевой оси, который возвращает колесо обратно в нейтральное положение.

Если наклонить велосипед, возникает момент силы, поворачивающий переднее колесо в сторону наклона. Этот момент вызван силой реакции опоры. Она приложена к точке, в которой колесо касается земли и направлена вверх. Из-за того, что рулевая ось не проходит через эту точку, при наклоне велосипеда сила реакции опоры смещается относительно рулевой оси.

Таким образом, осуществляется автоматическое подруливание, помогающее поддерживать равновесие. Если велосипед случайно наклоняется, то переднее колесо поворачивается в ту же сторону, велосипед начинает поворачивать, центробежная сила возвращает его в вертикальное положение, а сила трения возвращает переднее колесо обратно в нейтральное положение. Благодаря этому, можно ехать на велосипеде «без рук». Велосипед сам поддерживает равновесие. Сместив центр тяжести в сторону, можно поддерживать постоянный наклон велосипеда и выполнить поворот.

Можно заметить, что способность велосипеда самостоятельно сохранять динамическое равновесие зависит от конструкции рулевой вилки. Определяющим является плечо реакции опоры колеса, то есть длина перпендикуляра, опущенного из точки касания колеса земли на ось вращения вилки; или, что эквивалентно, но проще измерить - расстояние от точки касания колеса до точки пересечения оси вращения вилки с землёй. Таким образом, для одного и того же колеса возникающий момент будет тем выше, чем больше наклон оси вращения вилки. Однако для достижения оптимальных динамических характеристик нужен не максимальный момент, а строго определенный: если слишком малый момент приведёт к трудности удержания равновесия, то слишком большой - к колебательной неустойчивости, в частности - «шимми» (см. ниже). Поэтому положение оси колеса относительно оси вилки тщательно выбирается при проектировании; многие велосипедные вилки имеют изгиб или просто смещение оси колеса вперёд для снижения избыточного компенсирующего момента.

Распространённое мнение о существенном влиянии гироскопического момента вращающихся колёс на поддержание равновесия является неправильным. На высоких скоростях (начиная примерно с 30 км/час) переднее колесо может испытывать т. н. скоростные виляния (speed wobbles), или «шимми» - явление, хорошо известное в авиации. При этом явлении колесо самопроизвольно виляет вправо и влево. Скоростные виляния наиболее опасны при езде «без рук» (то есть когда велосипедист едет, не держась за руль). Причина скоростных виляний - не в плохой сборке или слабом креплении переднего колеса, они вызваны резонансом. Скоростные виляния легко погасить, снизив скорость или изменив позу, но если этого не сделать, они могут быть смертельно опасными.

Езда на велосипеде эффективнее (по затратам энергии на километр) как ходьбы, так и езде на автомобиле. При езде на велосипеде со скоростью 30 км/ч сжигается 15 ккал/км (килокалорий на километр), или 450 ккал/ч (килокалорий в час). При ходьбе со скоростью 5 км/ч сжигается 60 ккал/км или 300 ккал/ч, то есть езда на велосипеде в четыре раза эффективнее ходьбы по затратам энергии на единицу расстояния. Поскольку при езде на велосипеде расходуется больше калорий в час, она также является лучшей спортивной нагрузкой. (При беге затраты калорий в час ещё выше, но вибрация травмирует колени и голеностопный сустав). Тренированный мужчина, не являющийся профессиональным спортсменом, может в течение длительного времени развивать мощность 250 ватт, или 1/3 л.с. Это соответствует скорости 30-50 км/час по ровной дороге. Женщина может развивать меньшую мощность, но большую мощность на единицу веса. Поскольку на ровной дороге почти вся мощность расходуется на преодоление сопротивления воздуха, а при езде в гору основные затраты - на преодоление силы тяжести, женщины, при прочих равных условиях, едут медленнее по ровному месту и быстрее в гору.

Почему не падает велосипед? Скорее всего, ответ на этот, на первый взгляд, несложный вопрос способен дать далеко не каждый. Возможно, этой темой приходилось интересоваться тем, кого однажды спрашивал ребенок. К числу основных факторов, благодаря которым существует этот феномен, можно отнести следующие два:

  • эффект кастора;
  • гироскопический эффект.

Эффект кастора

Основан на постоянном подруливании, или, точнее, на возможности использования центробежной силы, возникающей при отклонении движущегося тела от прямой траектории. Происходит так, что выравнивающая сила возникает при повороте руля велосипеда. Причем ее направление противоположно стороне поворота руля. Поэтому, двигаясь прямо, при малейшем отклонении в сторону велосипедисту нужно лишь немного повернуть руль в том же направлении, и центробежная сила выравнивает равновесие.

Таким образом, если внимательно посмотреть на едущего велосипедиста, можно заметить, что при движении в прямом направлении его траектория не идеально ровная. Причем степень извилистости зависит от скорости движения: чем она ниже, тем сильнее петляет велосипед. Или другой пример: можно присмотреться к следам велосипеда на земле. След от переднего колеса будет представлять собой вытянутую синусоиду с осью в виде следа от заднего колеса.

Любопытно, что подруливание происходит само, то есть велосипедисту не нужно делать этого специально, а достаточно просто научиться использовать этот эффект. Именно такой навык и лежит в основе умения ездить на велосипеде.

Гироскопический эффект

Основан на свойстве вращающегося круглого или шарообразного тела сохранять свое положение в пространстве, пока на него не окажут воздействие другие силы. Один из примеров этого явления – известный каждому с детства волчок. Он не падает до тех пор, пока крутится. В велике роль таких волчков выполняют колеса.

Убедиться в этом можно, проведя простой опыт. Если снять велосипедное колесо, взяться руками за места креплений и раскрутить (желательно, чтобы кто-то помог это сделать), то можно заметить, что вращающееся колесо тяжело поворачивать в пространстве. Или, например, детский вертолет. При раскрученном пропеллере, для того чтобы подбросить игрушку вверх, требуются усилия, как будто в руках находится более тяжелый предмет. Еще ощутимее заметен эффект гироскопа при больших оборотах вращения. Это наверняка замечали те, кому приходилось работать с некоторыми электрическими инструментам (болгарка, паркетка и пр.)

Способность вращающегося тела сохранять направление применяется в разных областях, например:

  • в авиации (вращающиеся лопасти стабилизатора в хвостовом оперении вертолета обеспечивают его курсовую устойчивость);
  • в ракетных системах и морской навигации (вращающийся чувствительный элемент гироскопа используется в приборах курсоуказания).

Таким образом, факты убедительно свидетельствуют о том, что эффекты кастора и гироскопа, действительно, играют определенную роль в поддержании устойчивости велосипеда во время движения. Но между тем, ни один из фактов не доказывает, что эти эффекты являются определяющими. Стало быть, существует еще какая-то сила, проявление которой находится перед глазами, а понимание – все еще за пределами досягаемости человеческого разума.

Один мой товарищ, серфя интернет наткнулся на сайт с вечными вопросами, наподобие, почему лед скользкий. Там же была министатья со ссылкой на оригинальное исследование , почему же велосипед едет. Оказывается, большие дяди от науки, отвлекаясь от элементарных частиц и от священной нанофизики, уделяют время и этому вопросу. Они создали модель велосипеда свободную от двух самых больших «помощников» велосипедиста: гироскопического эффекта и наклона вилки переднего колеса (кастора)… и даже эта модель оказалась стабильна!

Что такое устойчивость и зачем она нужна?

Велосипедист на покоящемся велосипеде изначально находится в состоянии неустойчивого равновесия. Любое возмущение приведет к выходу из неустойчивого равновесия – в нашем случае на землю, где он будет пребывать, сколько захочет. Внизу примеры неустойчивого и устойчивого равновесий.

Но все меняется, когда велосипед едет. В этом случае, если велосипед захочет упасть, его переднее колесо поворачивается так, чтобы восстановить вертикальное положение. Причем, это возвращение заложено в саму физику велосипеда, так что райдеру, на самом деле, и делать ничего не нужно. Велосипед, разогнанный до определенной скорости (в статье приводится значение в 15-20 км/ч), может ехатьв стабильном вертикальном положении и без велосипедиста.
Из-за того, что велосипед стабилен лишь в движении, но не в покое, можно сказать, что эта система устойчива динамически.

Что помогает велосипеду возвращаться в изначальное положение?

Два эффекта, вносящих наибольший вклад – это гироскопический эффект и кастор переднего колеса.

Гироскопический эффект – эффект, возникающий во вращающихся системах, обладающих определенным угловым моментом, когда пытаются изменить направление оси вращения. Сила, возникающая в таком случае, называется гироскопической силой. Гироскопический эффект нетривиально объяснить, но его легко почувствовать. Самый простой эксперимент, который каждый из вас может поставить в домашних условиях, – это взять колесо велосипеда за ось, раскрутить и попробовать помахать им в воздухе. Вы почувствуете силу. Причем, чем больше раскрутите колесо, тем больше сила. На этой же силе основана тренировка с powerball , только система там немного оптимизированнее. Когда вы наклоняете велосипед – наклоняется и ось переднего колеса, колесо за счет гироскопического эффекта поворачивает в сторону наклона.

Кастор в нашей литературе – это угол наклона оси поворота автомобиля. Там это: caster effect , castor и т.д. Наш угол наклона рулевой – тот же кастор.


Существование кастора приводит к тому, что точка контакта переднего колеса находится за воображаемой точкой пересечения линии вилки и земли. Это приводит к так называемому «следу» или trail переднего колеса. Эффект от такой геометрии вы можете наблюдать на тележках в ашанах: колесо всегда стремится волочиться за тележкой. При стабилизации это проявляется в том, что при наклоне велосипеда переднее колесо стремится «провалиться» в сторону наклона велосипеда, тем самым, поворачивая колесо в сторону

А что если?..

А что если убрать эти два эффекта? J. D. G. Kooijman, J. P. Meijaard, Jim M. Papadopoulos, Andy Ruina, и A. L. Schwab собрали модель велосипеда, в которой оба эффекта отсутствуют – two-mass -skate (TMS ).


Они сильно уменьшили след колеса и перевернули его задом наперед, уменьшили размеры колес и добавили вторичные, которые крутятся в другую сторону, чтобы исключить гироскопический эффект.

И как видно из видео, модель все еще оказывается стабильной!

А выводы достаточно размыты. Во-первых, если исключить кастор и гироскопический эффект, то силы, которые могут стабилизировать велосипед, должны возникнуть из взаимодействия колеса с поверхностью при движении. Во-вторых, хоть кастор и гироскопический эффект и не обязательны, их нельзя рассматривать изолированно, т.к. со слов авторов можно построить системы, которые при наличии только одного из эффектов окажутся нестабильными на любых доступных человеку скоростях. Т. е.для стабильности важно взаимодействие этих двух эффектов. Это значит, что нет универсальных схем для всех типов байков, что дает большой простор для производителей и маркетинга.

Ps . Когда разбирался в этой статье, наткнулся на обширную на EnWiki про вело- и мотодинамику, о том, какие силы влияют на движение байка, про разные эффекты, геометрии и т.д. с количеством ссылок > 50. При желании могу пересказать ее по частям сюда.

Эффект гироскопа тут ни при чем

Мы и не подозреваем, насколько напряженно и неустанно наш мозг работает над тем, чтобы мы не упали.

Об очень легком задании британцы говорят, что это "просто, как кататься на велосипеде". Но как нам удается удерживать этот самый велосипед от падения?

Большинство скажет, что дело в эффекте гироскопа. Но в действительности дело обстоит совсем иначе.

Иными словами, гироскопический эффект объясняется тем, что вращающееся колесо стремится продолжить вращение вокруг своей оси (так остаются на своей оси вращения волчок и даже планета Земля).

Этот эффект заметен мотоциклистам, ведь колеса у мотоциклов большие, массивные и вращаются быстро. Но простой велосипедист с ним не сталкивается - колеса велосипеда намного легче, а на прогулочной скорости они крутятся недостаточно быстро.

Если бы в педальном велосипеде использовался эффект гироскопа, то любому новичку было бы достаточно оттолкнуться ногой - все остальное сделали бы за него законы природы.

Но на самом деле вам придется учиться кататься на велосипеде так же, как вы в свое время учились ходить.

За умение ездить на велосипеде отвечает исключительно ваш мозг.

Представьте себе, что вам нужно проехать по абсолютно прямой линии, нарисованной на совершенно ровной поверхности. Конечно, это же очень просто! А вот и нет.

По узкой прямой линии проехать почти невозможно - точно так же, как даже в трезвом состоянии вам вряд ли удастся пройти по ней, не оступившись. Попробуйте сами.

Проведите еще один маленький эксперимент: попробуйте устоять на одной ноге на цыпочках, используя руки, чтобы удержать равновесие.

Трудно, правда? А теперь попробуйте то же самое, но перепрыгивая с ноги на ногу. Сохранять равновесие станет намного легче.


Конструкция велосипеда позволяет управлять им без рук, наклоняясь влево или вправо

Именно так вы бегаете. Ваш мозг научился вносить маленькие коррективы при каждом прыжке: например, если вы отклонились вправо, то на следующем шаге сдвинетесь чуть влево.

Точно так же происходит езда на велосипеде: с каждым оборотом педалей вы немного меняете направление.

Начиная падать вправо, вы неосознанно поворачиваете руль в ту же сторону, чтобы изменить положение колеса, а затем так же неосознанно возвращаетесь на прежнюю траекторию движения.

Такое "виляние" совершенно нормально. Оно более заметно у новичков (особенно у детей), которые ездят по довольно крутой "синусоиде", и практически незаметно у опытных велосипедистов.

Тем не менее эти небольшие колебания являются частью процесса и объясняют, почему так сложно пройти (или проехать) по совершенно прямой линии - в этом случае вы лишены возможности совершать те самые необходимые движения из стороны в сторону.

Кроме того, в конструкции велосипеда есть несколько полезных решений, облегчающих езду.

Самое важное из них - наклон рулевой колонки (или так называемого рулевого стакана), благодаря которому переднее колесо касается земли в точке, находящейся сзади от точки проекции рулевой оси на землю. Расстояние между этими точками называется выкатом.


Велосипед сконструирован очень умно, его даже носить удобно

Выкат в значительной степени помогает сохранять равновесие, когда вы едете без рук: если вы, например, наклонитесь вправо, сила, действующая на так называемое пятно контакта с землей, повернет переднее колесо направо.

Это свойство облегчает управление и позволяет рулить без рук, слегка наклоняясь влево или вправо.

Но существуют и велосипеды с вертикальными рулевыми колонками, на которых также можно отлично ездить. На самом деле, сделать велосипед, на котором будет невозможно ездить, весьма сложно, хотя многие и предпринимали такие попытки.

Дело в том, что велосипед не падает только благодаря вам и вашему сознанию, и доказать это просто.

Попробуйте, например, перекрестить руки. Вы не сможете даже тронуться с места, а если сделаете это на ходу, то рискуете сразу же упасть. Если бы велосипед удерживался вертикально с помощью эффекта гироскопа, этого бы не произошло.

Клоуны и уличные артисты ездят на велосипедах с обратным рулем. На то, чтобы научиться этому, уходят месяцы тренировок: ведь нужно полностью разучиться ездить на обычном велосипеде. Просто поразительно, как работает наш мозг!

А что же с эффектом гироскопа, о котором я упоминал выше? Помогает ли он хоть немного? Нет, если только вы не разгонитесь до очень большой скорости.

Существует известный эксперимент, якобы доказывающий влияние этого эффекта на колесо велосипеда, однако расчеты показывают, что его сила далека от того значения, которое могло бы удержать вас в вертикальном положении во время езды.

Чтобы доказать, что эффект гироскопа не имеет значения, я построил велосипед со вторым передним колесом, вращающимся в противоположном направлении. Эта идея не нова: такое же устройство сделал в 1970 году Дэвид Джонс. Нам обоим пришла в голову одна и та же идея.

Если объяснить вкратце, то вращающееся в обратную сторону колесо уничтожает эффект гироскопа для переднего колеса и доказывает, что на самом деле единственное, что удерживает вас от падения, - это деятельность вашего мозга.

Это еще и забавный эксперимент, проделать который может каждый.

Итак, какой же способ обучения езде на велосипеде является наилучшим? Знаете, мне не нравится, когда дети учатся кататься с тренировочными маленькими колесиками по бокам: каждый раз, касаясь ими земли, они утрачивают навык сохранения равновесия.

Ваш мозг должен научиться корректировать курс, так что снимите тренировочные колесики - и чем больше вы будете вилять, тем лучше.

За умение ездить на велосипеде на самом деле отвечает только ваша голова.